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Abstract

The concept of isolation in graphs plays an important role in understanding the structural
resilience and control mechanisms of networks. In this paper, we investigate the minimum
independent isolation number of various corona product graphs such as Pn ⊙ Pm, Pn ⊙ Cm,
Kn ⊙Km, Pn ⊙Km and Pn ⊙ Sm. An independent isolating set I of G is defined as a subset
of the vertex set V of G in which no two vertices are adjacent and when removed I from the
graph along with all their neighbors, only isolated vertices are left. An independent isolating
set with smallest vertices is called a minimum independent isolating set. The independent
isolation number of a graph G is the order of the minimum independent isolating set of G.

We compute the minimum independent isolation number of Pn ⊙ Pm, Pn ⊙ Cm, Kn ⊙ Km,
Pn ⊙Km and Pn ⊙ Sm.

Keywords: article; template; simple

*Corresponding author:
Email address: barman.sambhu@gmail.com
DOI: https://doi.org/10.5281/zenodo.18230927
Received on: 29 November 2025; Accepted on: 22 December 2025

© Debra Thana Sahid Kshudiram Smriti Mahavidyalaya (Autonomous) 98

https://debracollege.ac.in/jcssi/index.aspx
https://orcid.org/0000-0002-6662-5172
https://orcid.org/0000-0002-5639-8439
barman.sambhu@gmail.com
https://doi.org/10.5281/zenodo.18230927


Journal of Contemporary Studies in Science and Innovation (JCSSI) Vol. 1 (2025)

1. Introduction

We consider a simple undirected connected graph G with vertex set V , and edge set E. For
the graph G = (V,E), we denote its order/cardinality |V (G)| by the symbol n. For a vertex x

inf V (G), the open neighborhood set of x is denoted by N(x) and is defined by N(x) = {y ∈
(V −{x}) : (x, y) ∈ E(G)}, while the closed neighborhood of x is denoted by the symbol N [x]

and defined by N [x] = N(x) ∪ {x}. For a subset A of V (G), the open neighborhood set of A
is denoted by N(A) and defined by N(A) = {x ∈ (V −A) : (x, y) ∈ E(G), y ∈ A}, while the
closed neighborhood of A is denoted by the symbol N [A] and defined by N [A] = N(A) ∪ A.
The degree of a vertex x ∈ V is denoted by the symbol dG(x) and defined by dG(x) = |N(x)|.
For, a subset S of V (G), G− S implies the graph that is obtained from G by removing all the
vertices in S and all the edges incident with a vertex in S. We also use the symbol G[S] to
denote the subgraph of G induced by the subset S of V (G).

Let F be a family of graphs. (Caro and Hansberg, 2017) introduced the concept of an F -
isolating set in a graph G. A subset I of V is called an F -isolating set if the subgraph G−N [I]

(obtained by removing all vertices in I and their neighbors) does not contain any graph from
F as a subgraph. The smallest possible size of such a set is denoted by ι(G,F ) and is called
the F -isolation number of G. When F = {K1}, then the F -isolating set becomes the same
as a dominating set, and therefore ι(G,K1) = γ(G), where γ(G) represents the domination
number of G. A dominating set I is called an independent dominating set if no two vertices
of I are adjacent. The independent domination number of G, denoted by i(G), is the smallest
size among all independent dominating sets. Again, if F = K2, the terms F -isolating set
and F -isolation number are simply called an isolating set and isolation number, and written as
ι(G). According to (Boyer and Goddard, 2024), an isolating set is equivalent to the vertex–edge
dominating set, a concept earlier introduced by (Lewis et al., 2010).

In this paper, we focus on a special type of isolating set I . An independent isolating set
(IIS, in short) I of G is defined as a subset of the vertex set V of G in which no two vertices are
adjacent and when removed I from the graph along with all their neighbors, only isolated ver-
tices are left. An IIS with smallest vertices is called a minimum IIS. The independent isolation
number of a graph G is denoted by ιi(G) and it is the smallest possible size of such a set. This
concept was first introduced by (Lewis, 2007) under the name independent vertex–edge domi-
nation number, and has been further explored in several studies (Chen et al., 2017; Favaron and
Kaemawichanurat, 2021; Zhang et al., 2023).

1.1. Survey

(Ma and Chen, 2004) proved in 2004 that i(G) ≤ n(G)
2

for every connected bipartite graph G.
For trees, (Favaron, 1992) showed that

γ(T ) ≤ i(T ) ≤ n(T ) + |L(T )|
3

for every nontrivial tree T , where L(T ) denotes the set of leaves. He also described the trees
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for which these bounds are tight. Later, (Cabrera-Martı́nez et al., 2023) improved this result by
proving that γ(T ) ≤ n(T )+|S(T )|

3
for any tree T with n(T ) ≥ 3, where S(T ) is the set of support

vertices. (Cabrera-Martı́nez, 2024) subsequently presented an alternative and stronger version
of this bound. More recently, (Krishnakumari et al., 2014) established the following bounds for
the isolation number of a tree T with n(T ) ≥ 3:

n(T )− |L(T )| − |S(T )|+ 3

4
≤ ι(T ) ≤ n(T )

3
.

They also characterized the trees that exactly satisfy these bounds. In 2025, (Boyer and God-
dard, 2025) studied the bounds on independent isolation in graphs. In the same year, (Hao
et al., 2025) explored the independent isolation number of a tree. Several other parameters
related to domination and independent domination in trees have been widely investigated in
(Cabrera-Martı́nez, 2023; Cabrera-Martı́nez and Conchado Peiró, 2022; Chellali and Meddah,
2012; Dehgardi et al., 2021; Lemańska, 2004; McFall and Nowakowski, 1980; Zhang and Wu,
2022, 2024).

1.2. Applications

The minimum independent isolation set of a graph has useful applications in network security,
communication systems, and resource allocation. The minimum independent isolation set of
the corona product of graphs is useful in modeling hierarchical and layered networks, such
as sensor–hub systems or social networks with core–periphery structures. It helps determine
the smallest group of non-adjacent control or monitoring nodes needed to isolate all edges
or substructures efficiently, ensuring independent supervision and optimal resource placement
across both base and attached subgraphs.

1.3. Main outcome

In this paper, we compute the minimum independent isolation number for several classes of
corona product graphs such as Pn ⊙ Pm, Pn ⊙ Cm, Kn ⊙Km, Pn ⊙Km and Pn ⊙ Sm.

1.4. Organization of the paper

In the next section, we give some notations used throughout our paper. In Section 3, we present
the formulae for finding the minimum independent isolation number of different types of corona
graphs. In Section 4, we give the conclusion of the paper.
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2. Some notations

ιi(G) : minimum independent isolation number of G.
IIS : independent isolating set.
Pn : path graph with n vertices.
Kn : complete graph with n vertices.
Cn : cycle graph with n vertices.
Sn : star graph with n vertices.

3. Minimum independent isolation number of corona product graphs

Let G1, G2 are two graphs with n1 nodes, m1 links/edges and n2 nodes, m2 edges, respectively.
Now a corona graph G1 ⊙G2 of G1 and G2 is made by drawing one copy of G1 and n1 copies
of G2 and joining the ith node point of G1 by an edge to each node point of the corresponding
copy of G2. The number of vertices and edges of corona graphs are, respectively, n1 + n1n2

and m1 + n1m2 + n1n2.
Here, we recall two well known results of the minimum independent isolation number of

Path and cycle graphs.

Theorem 1 ιi(Pn) = ⌈n−1
4
⌉, n > 1.

Theorem 2 ιi(Cn) = ⌈n
4
⌉.

Now, we present the computational formulae for finding the minimum independent isolation
number of some corona product of graphs.

3.1. Minimum independent isolation number of Pn ⊙ Pm

Theorem 3 ιi(Pn ⊙ Pm) = ⌈n
2
⌉+ (n− ⌈n

2
⌉)⌈m−1

4
⌉, m > 1.

Proof. Let Pn⊙Pm (for example, see the Figure 1) be a corona product graph, where V (Pn) =

{v1, v2, ..., vn} and the vertices of the ith of Pm are {vi,1, vi,2, ..., vi,m}, i = 1, 2, ..., n, and
m > 1. We also denote the subgraph of Pn⊙Pm induced by the vertices {vi, vi,1, vi,2, ..., vi,m},
1 ≤ i ≤ n by the symbol Gi. Now, if we remove N [vi] from Gi, then Gi becomes an edge
free graph. Therefore, minimum IIS of Gi is {vi} and ι1(Gi) = 1. So, we can include v1 as
the first member of IIS of Pn ⊙ Pm. But, we cannot include v2 as the second member of IIS
of Pn ⊙ Pm as (v1, v2) ∈ E. Also, the second copy of Pm is not vertex-edge dominated by
v1. So, we have to find the IIS of the second copy of Pm and we know that ιi(Pm) = ⌈m−1

4
⌉

(using Theorem 1). So, next member (after the selection of first (1 + ⌈m−1
4

⌉)th vertices of
IIS) of IIS is v3. Therefore, to find minimum IIS of Pn ⊙ Pm, we have to select maximum
number of vertices of Pn as the members of IIS, and the number of these vertices (such as
v1, v3, v5, ..., n(for even) or n− 1 (for odd)) is ⌈n

2
⌉. Again, for each attached copy of Pm corre-

sponding to vi, i = 2, 4, ..., 2⌊n/2⌋, ιi(Pm) = ⌈m−1
4

⌉. In addition, ⌊n/2⌋ = n−⌈n/2⌉, if n is a
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natural number. Therefore, ιi(Pn⊙Pm) = ⌈n
2
⌉+(n−⌈n

2
⌉)⌈m−1

4
⌉. Hence, the result is proved. □

Note 1: ιi(P4 ⊙ P3) = ⌈4
2
⌉+ (4− ⌈4

2
⌉)⌈3−1

4
⌉ = 2 + 2 = 4.

Figure 1: Corona product graph P4 ⊙ P3.

3.2. Minimum independent isolation number of Pn ⊙ Cm

Theorem 4 ιi(Pn ⊙ Cm) = ⌈n
2
⌉+ (n− ⌈n

2
⌉)⌈m

4
⌉.

Proof. Suppose Pn ⊙ Cm (for example, see the Figure 2) be a corona product graph, where
V (Pn) = {v1, v2, ..., vn} and the vertices of the ith of Cm are {vi,1, vi,2, ..., vi,m}, i = 1, 2, ..., n.
We also denote the subgraph of Pn ⊙ Cm induced by the vertices {vi, vi,1, vi,2, ..., vi,m}, 1 ≤
i ≤ n by the symbol Gi. Now, if we remove N [vi] from Gi, then Gi becomes an edge free
graph. Therefore, minimum IIS of Gi is {vi} and ι1(Gi) = 1. So, we can include v1 as the
first member of IIS of Pn ⊙ Cm. But, we cannot include v2 as the second member of IIS of
Pn ⊙ Cm as (v1, v2) ∈ E. Also, the second copy of Cm is not vertex-edge dominated by
v1. So, we have to find the IIS of the second copy of Cm and we know that ιi(Cm) = ⌈m

4
⌉

(using Theorem 2). So, next member (after the selection of first (1 + ⌈m
4
⌉)th vertices of IIS)

of IIS is v3. Therefore, to find a minimum IIS of Pn ⊙ Cm, we have to select maximum
number of vertices of Pn as the members of IIS, and the number of these vertices (such as
v1, v3, v5, ..., , n(for even) or n− 1 (for odd)) is ⌈n

2
⌉. Again, for each attached copy of Cm cor-

responding to vi, i = 2, 4, ..., 2⌊n/2⌋, ιi(Cm) = ⌈m
4
⌉. In addition, ⌊n/2⌋ = n − ⌈n/2⌉, if n is

a natural number. Therefore, ιi(Pn⊙Cm) = ⌈n
2
⌉+(n−⌈n

2
⌉)⌈m

4
⌉. Hence, the result is proved. □

Note 2: ιi(P4 ⊙ C3) = ⌈4
2
⌉+ (4− ⌈4

2
⌉)⌈3

4
⌉ = 2 + 2 = 4.

Figure 2: Corona product graph P4 ⊙ C3.

3.3. Minimum independent isolation number of Kn ⊙Km

Theorem 5 ιi(Kn ⊙Km) = n.
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Figure 3: Corona product graph K3 ⊙K3.

Proof. Suppose Kn ⊙ Km (for example, see the Figure 3) is a corona product graph, where
V (Kn) = {v1, v2, ..., vn} and the vertices of the ith of Km are {vi,1, vi,2, ..., vi,m}, i = 1, 2, ..., n.
We also denote the subgraph of Kn ⊙ Km induced by the vertices {vi, vi,1, vi,2, ..., vi,m}, 1 ≤
i ≤ n by the symbol Gi. We know that a complete graph is vertex-edge dominated by any
vertex of it. So, we can select any vertex of Kn or Km as the 1st member of IIS of Kn ⊙Km.
Let, v1 is the 1st selected member of IIS of Kn ⊙Km. So, we cannot select any other vertices
of Kn as the 2nd member of IIS as Kn is a complete graph. So, after removal N [vi] from
Kn ⊙Km, only n − 1 copies of Km corresponding to the vertices v2, v3, ..., vn. Therefore, to
make edge free of these n − 1 copies of Pm, we have to select one vertex from each n − 1

copies of Km as a member of IIS. Therefore, ιi(Kn ⊙Km) = 1+ n− 1 = n. Hence, the result
is proved. □

Note 3: ιi(K3 ⊙K3) = 3.

Figure 4: Corona product graph P4 ⊙K3.

3.4. Minimum independent isolation number of Pn ⊙Km

Theorem 6 ιi(Pn ⊙Km) = n.

Proof. Suppose Pn ⊙ Km (for example, see the Figure 4) is a corona product graph, where
V (Pn) = {v1, v2, ..., vn} and the vertices of the ith of Km are {vi,1, vi,2, ..., vi,m}, i = 1, 2, ..., n.
We also denote the subgraph of Pn⊙Km induced by the vertices {vi, vi,1, vi,2, ..., vi,m}, 1 ≤ i ≤
n by the symbol Gi. We know that a complete graph is vertex-edge dominated by any vertex
of it. So, we can select any vertex of Km as the 1st member of IIS of Pn ⊙Km. Let, v1,1 is the
1st selected member of IIS of Pn ⊙Km. So, after removal N [v1,1] from Kn ⊙Km, Pn ⊙Km

becomes Pn−1⊙Km. Therefore, to make edge free of Pn−1⊙Km, we have to select one vertex
from each n− 1 copies of Km as a member of IIS. Therefore, ιi(Pn ⊙Km) = 1 + n− 1 = n.
Hence, the result is proved. □

Note 4: ιi(P4 ⊙K3) = 4.
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3.5. Minimum independent isolation number of Pn ⊙ Sm

Theorem 7 ιi(Pn ⊙ Sm) = n.

Proof. Suppose Pn ⊙ Sm (for example, see the Figure 5) is a corona product graph, where
V (Pn) = {v1, v2, ..., vn} and the vertices of the ith of Sm are {vi,1, vi,2, ..., vi,m}, i = 1, 2, ..., n.
We also denote the subgraph of Pn⊙Km induced by the vertices {vi, vi,1, vi,2, ..., vi,m}, 1 ≤ i ≤
n by the symbol Gi. We know that a star graph is vertex-edge dominated by its central vertex.
So, we can select central vertex (v1,1) of Sm as the 1st member of IIS of Pn ⊙ Sm. Let, v1,1 be
the 1st selected member of IIS of Pn ⊙ Sm. So, after removal N [v1,1] from Kn ⊙ Sm, Pn ⊙ Sm

becomes Pn−1 ⊙ Sm. Therefore, to make edge free of Pn−1 ⊙ Sm, we have to select one vertex
from each n − 1 copies of Sm as a member of IIS. Therefore, ιi(Pn ⊙ Sm) = 1 + n − 1 = n.
Hence, the result is proved. □

Note 5: ιi(P3 ⊙ S4) = 3.

y y y

vv
v

v v w
v

v y w
v

x

v1 v2 v3

v1,1v1,2

v1,3

v1,4 v2,2 v2,1

v2,3

v2,4 v3,1v3,2

v3,3

v3,4

Figure 5: Corona product graph P3 ⊙ S4.

4. Conclusion and future scope

In this work, we have investigated the minimum independent isolation number of several impor-
tant classes of corona product graphs. Although existing studies primarily focus on establish-
ing bounds for the independent isolation number of basic graph families such as trees, bipartite
graphs, and related structures, exact values for more complex constructions remain relatively
unexplored. Addressing this gap, we have determined the exact minimum independent isola-
tion number for the corona product graphs Pn⊙Pm, Pn⊙Cm, Kn⊙Km, Pn⊙Km and Pn⊙Sm.
By carefully examining the structural characteristics of each corona construction, we obtained
explicit formulas and provided characterizations of their minimum independent isolating sets.

Our results highlight that the corona operation significantly influences the isolation prop-
erties of graphs. The attachment of secondary graphs to each vertex of a base graph leads to
a systematic increase in the minimum independent isolation number, with the extent of this
increase depending on the structural features of the attached graph.

Corona product graphs provide useful models for complex systems such as communication,
biological, and social networks. The exact values obtained in this study can aid in analyzing
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network resilience, optimizing connectivity, and designing efficient network topologies in prac-
tical applications.

Future work may extend these results to other graph products and explore algorithmic and
computational aspects of independent isolation numbers. Investigating related isolation pa-
rameters and applying the concepts to dynamic or large-scale networks also remain promising
directions for further research.
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